

The ratio of prime numbers

2021.03.04

Abstract

The formula for generating prime numbers is derived from the formula for the sum of squares of natural numbers. The generation formula generates two series of prime numbers. Every prime number belongs to one of the two series. The ratio of prime numbers to natural numbers is calculated using the characteristics of the generation formula.

1 . At the beginning

The formula for generating prime numbers is derived from the formula for the sum of squares of natural numbers. The generation formula generates two series of prime numbers. Every prime number belongs to one of the two series. The ratio of prime numbers to natural numbers is calculated using the characteristics of the generation formula.

2 . Derivation of generation formula

The formula for the sum of squares of natural numbers is as follows.

$$\sum_{i=1}^k i^2 = 1 + 2^2 + 3^2 + \cdots + (k-2)^2 + (k-1)^2 + k^2 = k(K+1)(2k+1)/6$$

Since the sum of squares of natural numbers is an integer, $k(K+1)(2k+1)$ is divisible by the number 6. Since the sum of squares of natural numbers is an integer, $k(K+1)(2k+1)$ must be divisible by the number 6.

When $p_k = 2k+1$ is a prime number, $(2k+1)$ is not divisible by the number 6.

At that time, k or $k+1$ is divisible by number 3 because either of them is an even number.

As a result, the following two series exist for the generation formula of the prime number p_k .

m is a natural number

$$k = 3m \quad p_k = 2k+1 = 6m+1$$

$$k+1 = 3m \quad p_k = 2k-2+1 = 6m-1$$

The two series are distinguished and described as follows.

$$p_k = 6m + 1 = p_{m+}$$

$$p_k = 6m - 1 = p_{m-}$$

$$m = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13$$

$$p_{m+} = 6m + 1 = 7 \quad 13 \quad 19 \quad \mathbf{25} \quad 31 \quad 37 \quad 43 \quad 49 \quad \mathbf{55} \quad 61 \quad 67 \quad 73 \quad 79$$

$$p_{m-} = 6m - 1 = 5 \quad 11 \quad 17 \quad 23 \quad 29 \quad \mathbf{35} \quad 41 \quad 47 \quad 53 \quad 59 \quad \mathbf{65} \quad 71 \quad \mathbf{77}$$

$$m = 14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad 21 \quad 22 \quad 23 \quad 24 \quad 25 \quad 26$$

$$p_{m+} = 6m + 1 = \mathbf{85} \quad 91 \quad 97 \quad 103 \quad 109 \quad \mathbf{115} \quad \mathbf{121} \quad 127 \quad 133 \quad 139 \quad \mathbf{145} \quad 151 \quad 157$$

$$p_{m-} = 6m - 1 = 83 \quad 89 \quad \mathbf{95} \quad 101 \quad 107 \quad 113 \quad \mathbf{119} \quad \mathbf{125} \quad 131 \quad 137 \quad \mathbf{143} \quad 149 \quad \mathbf{155}$$

$$m = 27 \quad 28 \quad 29 \quad 30 \quad 31 \quad 32 \quad 33 \quad 34 \quad 35 \quad 36 \quad 37 \quad 25 \quad 26$$

$$p_{m+} = 6m + 1 = 163 \quad \mathbf{169} \quad \mathbf{175} \quad 181 \quad 187 \quad 193 \quad 199 \quad \mathbf{205} \quad 211 \quad 217 \quad 223 \quad 229 \quad \mathbf{235} \dots$$

$$p_{m-} = 6m - 1 = 161 \quad 167 \quad 173 \quad 179 \quad \mathbf{185} \quad 191 \quad 197 \quad 203 \quad 209 \quad \mathbf{215} \quad 221 \quad 227 \quad 233 \dots$$

As described above, any prime number p_k belongs to any of the two sequences (p_{m+} and p_{m-}) generated in the order of the natural number m .

Since the natural number m is infinite, the sequence of two series also continues infinitely.

However, non-prime numbers in bold (multiples of prime numbers) are also generated.

3 . Total number of non-prime numbers in the two series

The sequence of each series contains m numbers (prime or non-prime) up to the maximum number $p_{m\pm}$. Consider the total number of products of any two different numbers (prime or non-prime) in two series.

$$1 \leq i \leq m \quad 1 \leq j \leq m$$

$$1 \quad 2 \quad 3 \dots \dots \dots \quad i \quad \dots \dots \dots \quad j \quad \dots \dots \dots \quad m$$

$$7 \quad 13 \quad 19 \dots \dots \dots \quad p_{i+} \dots \dots \dots \quad p_{j+} \dots \dots \dots \quad 6m + 1$$

$$5 \quad 11 \quad 17 \dots \dots \dots \quad p_{i-} \dots \dots \dots \quad p_{j-} \dots \dots \dots \quad 6m - 1$$

$$p_{i+}p_{j+} = p_{l+} \quad l = 6ij + i + j$$

$$p_{i-}p_{j-} = p_{h+} \quad h = 6ij - i - j$$

$$p_{i+}p_{j-} = p_{r-} \quad r = 6ij - i + j$$

$$p_{i-}p_{j+} = p_{s-} \quad s = 6ij + i - j$$

The maximum value $p_{m+}p_{m-}$ of the product of two different numbers is as follows.

$$p_m + p_{m-} = (6m + 1)(6m - 1) = 36m^2 - 1 = 6(6m^2) - 1 \cong 36m^2$$

$$7 \ 13 \ 19 \dots \dots \dots p_{i+} \dots \dots \dots p_{j+} \dots \dots \dots \dots \dots p_{i+}p_{j+} \dots \dots \dots p_{i-}p_{j-} \dots \dots 36m^2$$

$$5 \ 11 \ 17 \dots \dots \dots p_{i-} \ \dots \dots \dots p_{j-} \ \dots \dots \dots \dots \dots p_{i+}p_{j-} \ \dots \dots \dots p_{i-}p_{j+} \ \dots \dots \dots 36m^2$$

Each series is a series of $6m^2$ numbers. Since it is a two-series, it consists of $12m^2$ numbers. If we know the number of non-prime numbers contained in these $12m^2$, we can know the number of prime numbers contained in these $12m^2$. Since a non-prime number is the product of two numbers contained in two series, any non-prime number contained in $12m^2$ belongs to products in the following (1)-(3). Therefore, the total number of non-prime numbers contained in $12m^2$ is the sum of number of products in (1)-(3).

(1) Product of two different numbers selected from the m numbers in the same series.

(2) Product of two numbers selected one from each series selected one from each series.

(3) Product of two numbers p_i and p_j . Then, the i of one number p_i is chosen so that $1 \leq i \leq m$, and the j of the other number p_j is chosen so that $nm < j < (n+1)m$.

The number of products in (1) is examined.

The method of selecting two different numbers from m numbers is as follows. There are m products of the same number, but since m is a huge number, m can be ignored compared to m^2 .

$$m!/2! (m-2)! = m(m-1)/2$$

Since there are two-series and m can be ignored compared to m^2 , $m(m-1) \cong m^2$ products (non-prime numbers) are generated in (1).

The number of products in (2) is examined.

Since there are m^2 ways to select m numbers for each of m numbers, m^2 products (non-prime numbers) are generated in (2).

The number of products in (3) is examined.

There are 4 series as follows.

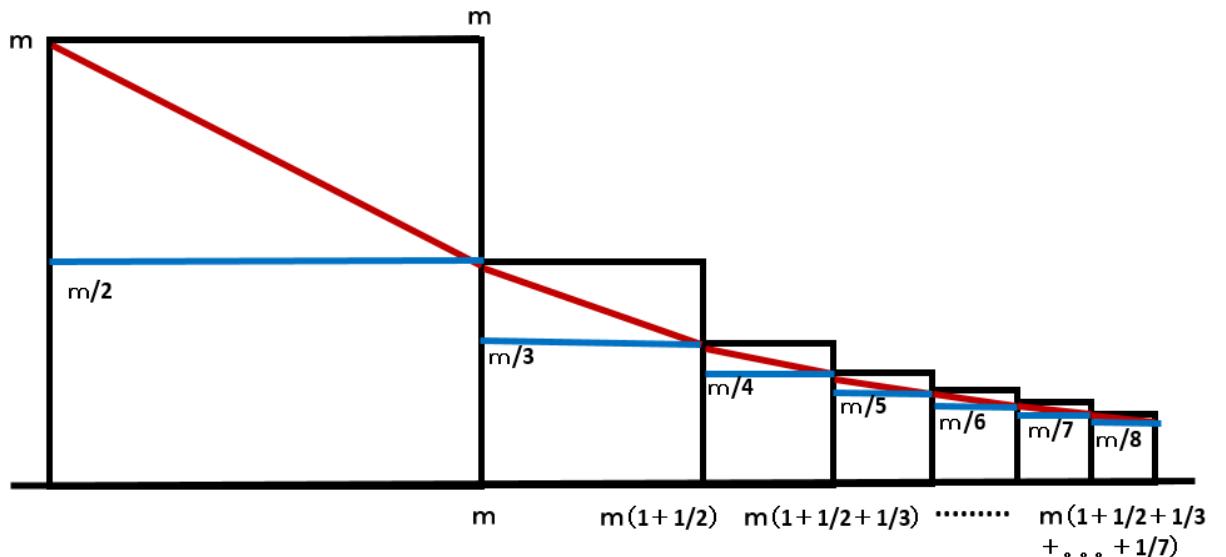
$$p_{i+}p_{j+} = p_{l+} \quad l = 6ij + i + j$$

$$p_{i-}p_{j-} = p_{h+} \quad h = 6ij - i - j$$

$$p_{i+}p_{j-} = p_{r-} \quad r = 6ij - i + j$$

$$p_{i-}p_{j+} = p_{s-} \quad s = 6ij + i - j$$

In the following, the number of products (non-prime numbers) in one series is calculated. Since the other three series are the same, the total number of products (non-prime numbers) is four times the number of products (non-prime numbers) in one series.



Because the product of two numbers does not exceed m^2 , the following equations hold.

$$0 \leq \alpha \leq 1$$

$$0 \leq n \leq m$$

$$1 \ 2 \ 3 \dots \dots (m - \beta) \dots \dots m \dots \dots nm \dots (n + \alpha)m \dots (n + 1)m \dots \dots \dots 6m^2$$

$$(m - \beta)(n + \alpha)m = m^2$$

$$(m - \beta) = m/(n + \alpha)$$

Integral with $(m/n)d\alpha$ on the right side of the above equation gives the number of products (non-prime numbers) of p_i ($1 \leq i \leq m$) and p_j ($nm \leq j \leq (n+1)m$) as shown in the following equations.

$$\int_0^1 (m - \beta) (m/n) d\alpha = \int_0^1 (m^2/n(n + \alpha)) d\alpha$$

$$\int_0^1 (m^2/n(n + \alpha)) d\alpha = m^2(1/n) \ln(n + \alpha) \Big|_0^1 = m^2(1/n) \ln((n + 1)/n)$$

$$\int_0^1 (m - \beta) (m/n) d\alpha = m^2(1/n) \ln(1 + 1/n)$$

The number of products (non-prime numbers) in one series is the sum of $n = 1 \sim m$ as following.

$$\sum_{n=1}^m m^2(1/n) \ln(1 + 1/n)$$

The same applies to the other three series, so the number of products (non-prime numbers) in (3) is as follows.

$$1/n(n + 1) < (1/n) \ln(1 + 1/n) < 1/n^2$$

$$\sum_{n=1}^{\infty} 1/n(n + 1) < \sum_{n=1}^m (1/n) \ln(1 + 1/n) < \sum_{n=1}^{\infty} 1/n^2$$

$$\sum_{n=1}^{\infty} 1/n(n + 1) = 1 \quad \sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$$

$$4m^2 < 4m^2 \sum_{n=1}^m (1/n) \ln(1 + 1/n) < 2m^2\pi^2/3$$

The total number Tn of non-prime numbers in (1) to (3) is as follows.

$$Tn = 2m^2 + 4m^2 \sum_{n=1}^m (1/n) \ln(1 + 1/n)$$

$$6m^2 < Tn < 2m^2(1 + \pi^2/3)$$

By subtracting the total number Tn of non-prime numbers from $12m^2$, the total number Tp of prime numbers is obtained as follows.

$$Tp = 12m^2 - Tn = 10m^2 - 4m^2 \sum_{n=1}^m (1/n)(1 + 1/n)$$

The ratio R of prime numbers Tp to natural numbers $36m^2$ is as follows.

$$R = Tp/36m^2$$

$$6m^2/36m^2 > R > (10m^2 - 2m^2\pi^2/3)/36m^2 \cong 0.0950$$

$$1/6 > R > 0.0950$$

Therefore, The ratio R of prime numbers Tp to natural number $36m^2$ is smaller than $1/6$ and larger than 0.0950 , independent of huge number m^2 .

The approximate calculation of the ratio R of prime numbers

to natural numbers is explained in detail below.

First, the approximate calculation from above is as follows.

$$1 < l < m$$

$$\sum_{n=1}^m (1/n) \ln(1 + 1/n) \cong \sum_{n=1}^l (1/n) \ln(1 + 1/n) + \sum_{n=l+1}^{\infty} 1/n^2$$

$$\sum_{n=l+1}^{\infty} 1/n^2 = \sum_{n=1}^{\infty} 1/n^2 - \sum_{n=1}^l 1/n^2 = \pi^2/6 - \sum_{n=1}^l 1/n^2$$

$$\sum_{n=1}^m (1/n) \ln(1 + 1/n) \cong \sum_{n=1}^l (1/n) \ln(1 + 1/n) + \pi^2/6 - \sum_{n=1}^l 1/n^2$$

$$Tp/m^2 \cong 10 - 4(\sum_{n=1}^l (1/n) \ln(1 + 1/n) + \pi^2/6 - \sum_{n=1}^l 1/n^2)$$

$$R = (Tp/m^2)/36$$

At $l = 6$, the ratio R of prime numbers to natural numbers is $\cong 0.1376$. And at $l = 10$, it is $\cong 0.1380$. The larger l , the better the approximation accuracy.

Next, the approximate calculation from below is as follows.

$$\sum_{n=1}^m (1/n) \ln(1 + 1/n) \cong \sum_{n=1}^l (1/n) \ln(1 + 1/n) + \sum_{n=l+1}^{\infty} 1/n(n+1)$$

$$\sum_{n=l+1}^{\infty} 1/n(n+1) = \sum_{n=1}^{\infty} 1/n(n+1) - \sum_{n=1}^l 1/n(n+1) = 1 - \sum_{n=1}^l 1/n(n+1)$$

$$\sum_{n=1}^m (1/n) \ln(1 + 1/n) \cong \sum_{n=1}^l (1/n) \ln(1 + 1/n) + 1 - \sum_{n=1}^l 1/n(n+1)$$

$$\sum_{n=1}^m (1/n) \ln(1 + 1/n) \cong \sum_{n=1}^l (1/n) \ln(1 + 1/n) + 1/(l+1)$$

$$Tp/m^2 \cong 10 - 4(\sum_{n=1}^l (1/n) \ln(1 + 1/n) + 1/(l+1))$$

$$R = (Tp/m^2)/36$$

At $l = 6$, the ratio R of prime numbers to natural numbers is $\cong 0.1386$. And at $l = 10$, it is $\cong 0.1382$. The larger l , the better the approximation accuracy.

From the above approximate calculations from above and below, the ratio R of prime numbers to natural numbers is predicted to be in the following range.

$$0.1380 < R < 0.1382$$

5. Conclusion

The generation of twin prime numbers is due to the fact that every prime number is generated in one of the two series.

According to the number function $\pi(x)$ of prime numbers presented by the prime number theorem, the ratio of prime numbers to natural numbers is $\pi(x)/x \cong 0.176846$ at $x = 10^{25}$. As x increases further, the ratio is expected to approach 0 as much as possible.

However, as mentioned above, the ratio R of prime numbers

to natural numbers is predicted to be smaller than 0.1382 and larger than 0.1380.